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Abstract: Understanding coastal sediment transport pathways is essential for 

effective management of coastal systems. To quantify the patterns underlying these 

pathways (Lagrangian Coherent Structures), we calculate Finite Time Lyapunov 
Exponents (FTLE) in the sediment transport velocity field using a sediment 

transport particle tracking model, SedTRAILS. We simulate an idealized sandy tidal 

inlet system over the course of a single tidal cycle. Here we show that FTLE patterns 
indicate barriers to sediment transport and zones of sediment dispersal. These 

patterns can be used to inform strategic placement of sediment for coastal 

nourishments and to develop testable hypotheses explaining sediment pathways. 

Introduction 

Coasts and estuaries evolve under the influence of complex hydrodynamics 

and morphodynamic feedbacks. Underlying these morphodynamic changes are a 

series of hidden patterns in the sediment transport pathways.  It is essential that we 

better understand these patterns because of their effect on coastal management 

concerns like nourishment dispersal, channel infilling, coastal erosion, and 

ecological impacts of human interventions.  

To this end, we developed SedTRAILS (Sediment TRAnsport vIsualization & 

Lagrangian Simulator), a Lagrangian sediment transport model which tracks the 

motion of sediment particles at O(102-104 m) scales (Pearson et al., 2021). In 

order to reveal the hidden structure underlying the sediment pathways, we identify 

Lagrangian Coherent Structures (LCS) in the sediment velocity field. LCS are 

commonly used in coastal and oceanographic applications to describe mixing and 

frontal systems in hydrodynamic flow fields (Reniers et al., 2010; Kuitenbrouwer 

et al., 2018). Here we propose a novel analysis of LCS in coastal sand transport 

fields, where LCS reveal barriers to sediment transport and zones of sediment 

mixing, accumulation, or dispersal, essential concepts for coastal engineering and 

management.  
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Methodology 

To demonstrate our method, we consider an idealized sandy tidal inlet. Our 

approach features 3 main steps (Fig. 1): 

(i) Simulate hydrodynamics with D-Flow FM model. 

(ii) Estimate Lagrangian sediment pathways using SedTRAILS model. 

(iii) Compute Finite-Time Lyapunov Exponent (FTLE) field. 

 

We elaborate on these steps in the following sections. 

 

 

Fig. 1. Overview of the four main steps to deriving Lagrangian coherent structures (LCS): (i) derive 

the Eulerian sediment transport fields; (ii) compute Lagrangian sediment pathways; (iii) compute 

Finite Time Lyapunov Exponents to approximate the Lagrangian Coherent Structures. 

 

Eulerian Hydrodynamic Modelling 

First, we use D-Flow FM (Deltares, 2022) to numerically model the depth-

averaged (2DH) hydrodynamics of an idealized tidal inlet (3 km long, 1 km wide) 

and basin (23 x 13 km) (Fig. 2). The model domain measures 60 x 40 km in size, 

with the finest grid resolution of 150 m in the inlet area. We focus our analysis on 

an 8 x 9 km region surrounding the inlet. The seabed in the inlet and basin is set at 

a constant level of -3 m MSL and is considered fixed during the simulation. An M2 

tide (with range of 1.8 m) propagates eastward alongshore. In the centre of the inlet, 

the tide is ebb-dominant with maximum currents of 1.6 m/s. Shore-normal waves 

of Hs = 3.5 m, Tp = 7 s are introduced at the seaward boundary. A Chezy coefficient 

of 65 m1/2/s is used to account for bed friction. 
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Fig. 2. Overview of D-Flow FM model bathymetry featuring inlet and basin (bed level of -3m). The 

bed elevation remains static throughout the simulation. Subsequent analyses focus on the area 

surrounding the inlet, indicated by the red box. 

 

Sediment Particle Tracking Modelling 

To estimate sediment transport pathways, we used SedTRAILS, a MATLAB-

based offline particle tracking model (Pearson et al., 2021). SedTRAILS 

generates the sediment transport velocity field ugr (Fig. 3a) for sand-sized particles 

(d50 = 200 μm) using the method of Soulsby et al. (2011): 

    ugr = P · R · Uc         (1) 

where P is a probability of motion between 0 and 1 depending on the exceedance 

of critical shear stress, R is a velocity reduction factor based on the dominant mode 

of transport (i.e., particles move faster as suspended load than bed load), and Uc is 

the flow velocity at a given point. We do not yet consider burial or mixing of 

particles within the seabed – a “concrete” bed, meaning that particles are always 

available for remobilization. 
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Fig. 3. Overview of the main steps to deriving Lagrangian coherent structures (LCS) in sediment 

velocity fields at an idealized tidal inlet, shown here at ebb tide. (a) Compute sediment transport 

vector field; (b) derive sediment particle trajectories; (c) compute Finite Time Lyapunov Exponent 

(FTLE) field (T = 2 hours); (d) interpret FTLE field as Lagrangian Coherent Structures. 

 

Sediment particles are then advected by this sediment transport velocity field, and 

their positions are represented by: 

𝑑

𝑑𝑡
𝒙(𝑡) = 𝒖𝒈𝒓(𝒙(𝑡), 𝑡) (2) 

where x represents the position of the particle in space, and ugr is the spatially and 

temporally-varying sediment transport velocity field. This approach considers 

purely advective transport without diffusion. 
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We advect sediment particles forward in time for a 6-hr window every 10 mins over 

the course of an M2 tidal cycle. We then repeat the procedure, instead advecting 

sediment particles backward in time over the same intervals. The resulting pathways 

then form the basis for subsequent analyses. 

Compute Finite Time Lyapunov Exponent (FTLE) 

To derive Lagrangian Coherent Structures, we use MATLAB to compute the 

Finite-Time Lyapunov Exponent (FTLE) from forward and backward particle 

trajectories as per Haller (2015) and Krishna et al (2021). The flow map Φ for a 

given period T is computed for each point in a regular grid of 20,000 particles 

initially spaced at Δx = 200 m and Δy = 250 m and released at t0 (Fig 3b): 

𝚽𝑡0

𝑡0+𝑇
: 𝒙(𝑡0) ↦ 𝑥(𝑡0) +  ∫ 𝑣(𝑥(𝜏), 𝜏)

𝑡0+𝑇

𝑡0
𝑑𝜏  (3) 

The Jacobian matrix of partial derivatives of the flow map DΦ quantifies the 

spreading or convergence of neighbouring pairs of particles over T relative to their 

initial positions: 

(𝐃𝚽𝑡0

𝑡0+𝑇
)

𝑖,𝑗
= [

Δ𝑥𝑖(𝑡0+𝑇)

Δ𝑥𝑖(𝑡0)

Δ𝑥𝑗(𝑡0+𝑇)

Δ𝑦𝑗(𝑡0)

Δ𝑦𝑖(𝑡0+𝑇)

Δ𝑥𝑖(𝑡0)

Δ𝑦𝑗(𝑡0+𝑇)

Δ𝑦𝑗(𝑡0)

] =

[

𝑥𝑖+1,𝑗(𝑡0+𝑇)−𝑥𝑖−1,𝑗(𝑡0+𝑇)

𝑥𝑖+1,𝑗(𝑡0)−𝑥𝑖−1,𝑗(𝑡0)

𝑥𝑖,𝑗+1(𝑡0+𝑇)−𝑥𝑖,𝑗−1(𝑡0+𝑇)

𝑦𝑖,𝑗+1(𝑡0)−𝑦𝑖,𝑗−1(𝑡0)

𝑦𝑖+1,𝑗(𝑡0+𝑇)−𝑦𝑖−1,𝑗(𝑡0+𝑇)

𝑥𝑖+1,𝑗(𝑡0)−𝑥𝑖−1,𝑗(𝑡0)

𝑦𝑖,𝑗+1(𝑡0+𝑇)−𝑦𝑖,𝑗−1(𝑡0+𝑇)

𝑦𝑖,𝑗+1(𝑡0)−𝑦𝑖,𝑗−1(𝑡0)

]  (4) 

From this matrix, the Cauchy-Green deformation tensor Δi,j is calculated as: 

𝚫𝑖,𝑗 = (𝐃𝚽𝑡0

𝑡0+𝑇
) ∗ (𝐃𝚽𝑡0

𝑡0+𝑇
) (5) 

Where * denotes the transpose of the matrix. We can then determine the Finite 

Time Lyapunov Exponent σi,j, which indicates regions with exponentially divergent 

particle trajectories: 

𝜎𝑖,𝑗 =
1

|𝑇|
ln √(𝜆𝑚𝑎𝑥)𝑖,𝑗 (6) 
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Where T is the integration time and λmax is the largest eigenvalue of Δi,j for 

each particle i,j. We select an integration time T of 6 hours to capture the dynamics 

on tidal timescales. Shorter timescales do not result in clearly-defined FTLE ridges, 

and longer timescales obscure the behaviour occurring at each stage of the tidal 

cycle. 

Ridges of high forward FTLE values correspond to repelling Lagrangian 

coherent structures in the sediment transport field. Conversely, ridges of high 

backward FTLE values correspond to attracting Lagrangian coherent structures in 

the sediment transport field, where sediment shears or converges in forward time. 

These attracting structures consequently act as barriers to transport. In Figs. 3 & 4, 

FTLEs are normalized such that forward (repelling) FTLEs are positive (yellow) 

and backward (attracting) FTLEs are negative (blue) as per d'Ovidio et al. (2004). 

Results 

Sediment Particle Tracking Modelling 

At ebb-tide, particles are advected seaward as a jet, which is then swept westward 

alongshore by the shore-parallel tides (Fig. 3b). At flood tide (not shown), the ebb 

jet is deflected eastward and particles are advected into the inlet. These particles 

accumulate inside the basin, forming a pattern that resembles an incipient flood tidal 

delta. In both cases, there is limited movement of particles within the basin, since 

velocities there are not high enough to move 200 μm sand grains at locations more 

than 1-2 km from the inlet. 

Lagrangian Coherent Structures 

The spatial patterns of LCS vary with each stage of the tidal cycle (Fig. 4). First, 

we consider the backward (attracting) FTLEs (blue). At ebb tide (Fig 4a, t=06:30), 

FTLE-b ridges form along the expanding boundaries of the ebb jet.  The most 

pronounced ridge forms along the eastern edge of the ebb jet, where the 

alongshore tidal current collides with it and many particles converge. At the 

beginning of the flood tide (Fig. 4b, t=09:50), the ebb jet is advected eastward 

with the alongshore tidal current. Inflowing currents at the mouth of the inlet 

pinch off the base of the ebb jet and FTLE-b ridges form in the channel, akin to 

tidal intrusion fronts (i.e., Largier, 1992). These ridges are advected towards the 

basin, where they accumulate just inside its entrance (Fig. 4d, t=14:50). Ridges at 

the lateral offshore boundaries are associated with edge effects and do not directly 

correspond to regions of convergence. 
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Fig. 4. Snapshots of FTLE field (T = 6 hours) at different stages of the tidal cycle. (a) ebb tide, (b) 

early flood tide, (c) peak flood tide, (d) high water slack. Positive (yellow) FTLE values indicate 

highly dispersive zones, while negative (blue) FTLE values indicate highly convergent zones. 

Velocities are positive to the north, measured at the red dot in the centre of the inlet. Solid black 

lines indicate the 0 m elevation contour. 



   8 

 

We next consider the forward (repelling) FTLEs (yellow). At ebb tide (Fig 4a, 

t=06:30), there are two high FTLE-f regions flanking the basin’s entrance which 

can be explained by particles there being ejected from the basin and far from their 

neighbours. As the flood jet within the basin wanes (Fig. 4b, t=09:50), these 

marginal regions expand to the entire basin entrance. During the flood tide (Fig. 

4c,d), analogous FTLE-f lobes develop at the seaward mouth of the inlet, where 

particles become sucked into the basin and greatly separated from their 

neighbours. Throughout much of the tidal cycle, FTLE-f ridges are high along the 

margins of the channel. 

Discussion 

Interpretation of Lagrangian Coherent Structures 

FTLE analysis has been widely used to quantify LCS hidden within coastal and 

oceanographic flows, and here we present a novel application of this technique to 

reveal the patterns underlying sand transport at an idealized tidal inlet. Areas of 

convergence corresponding to backward FTLE ridges are barriers to sediment 

transport, while areas of divergence corresponding to forward FTLE ridges are 

highly dispersive. However, high FTLE values may also be explained by zones 

of intense shear (e.g., at channel walls), which are not truly convergent. Further 

analysis using the techniques outlined in Haller (2015) can help differentiate these 

shear zones. 

The information obtained using this approach can be used to explain sediment 

pathways obtained using tracer studies or numerical models (e.g., Pearson et al., 

2021). In particular, this method allows us to better understand the patterns 

underlying sediment transport at tidal timescales. Residual transport patterns 

averaged over longer periods (months to years) determine morphological 

changes, but gross transport patterns at these shorter timescales remains under-

examined. These patterns are relevant for human interventions in the coastal 

system, such as the placement of sediment for nourishments. 

 

Next Steps 

After demonstrating a proof of concept for this technique in an idealized 

context, the next steps will be to apply it to real study sites with sufficient data 

for calibration and validation (e.g., drifter studies, radar data, and sediment 

tracers). Potential sites include Ameland Inlet in the Netherlands (Elias et al., 

2022) and the mouth of the Columbia River in the US (Stevens et al., 2020).  
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Knowledge of sediment transport patterns and pathways is essential for strategic 

placement of sediment as part of building with nature or beneficial reuse 

programs. For example, placing nourishments may require careful timing and 

positioning to ensure that the sediment reaches the target area efficiently (e.g., 

Baptist et al., 2019). Sediment could be placed on the opposite side of a 

transport barrier to avoid deposition in an ecologically sensitive area.  

 

Furthermore, the present analysis opens up new hypotheses to test in future 

research. Since backward (forward) FTLEs correspond to zones of convergence 

(divergence), they should indicate depositional (erosional) zones. Persistent 

FTLEs may thus indicate regions of morphodynamic change.  Saddle points 

between forward and backward FTLEs both attract and then repel particles, so 

they correspond to energy-efficient trajectories through a flow field (Krishna et 

al., 2022) and regions of enhanced mixing (d'Ovidio et al., 2004). Persistent 

saddle points could thus represent nodes on key sediment transport pathways. 

 
Conclusions  

Here we present a novel approach to interpreting Lagrangian sediment transport 

model output via the application of finite-time Lyapunov exponents (FTLE). The 

Lagrangian coherent structures (LCS) revealed by FTLE analysis at an idealized 

tidal inlet indicate barriers to sediment transport and zones of sediment mixing, 

accumulation, or dispersal, which are important concepts for coastal engineering 

and management. The spatial patterns of LCS vary in space and time with the 

different stages of the tidal cycle. Areas of convergence corresponding to 

backward LCS ridges are barriers to transport, while areas of divergence 

corresponding to forward LCS ridges are highly dispersive. This approach also 

presents new opportunities for testing hypotheses about the patterns underlying 

sediment transport pathways. 
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