Last week, the Newfoundland (on the east coast of Canada) got hit by a record-breaking storm: a “hurricane blizzard”, with 150 km/h winds, >10 m waves, and almost a metre of snow. Newfoundlanders are no strangers to bad weather, but this is rough stuff even by their standards.
In a fit of procrastination, I started wandering around Newfoundland in Google Earth. The Strait of Belle Isle separates the northern tip of Newfoundland from the rest of Canada, and is often frozen over in the winter. When this ice breaks up in the spring, it makes beautiful patterns from space. What struck me was that the broken ice floes looked a lot like the microscopic sand photographs I have been posting on this website:


Apparently the shape and size of sea ice floes is largely governed by ice melting, collisions and mergers between floes, and breakup due to flexing by ocean swell waves (Toyota et al., 2006). Even though the specifics of the mechanisms moving and shaping sand grains on the seabed at millimetre scales are different from those acting on ice floes one million times larger, the same general laws of physics still apply. This is one of my favourite things about nature: there is great beauty in finding similar patterns at different scales in completely different contexts!
Sources:
Toyota, T., Takatsuji, S., & Nakayama, M. (2006). Characteristics of sea ice floe size distribution in the seasonal ice zone. Geophysical research letters, 33(2).