Nature-Based Solutions for Salt Intrusion

When you think of coastal climate change impacts, what do you think of? Probably sea level rise, changes in wave climate or storminess, or loss of coastal habitat. But a silent intruder lurks: salty seawater, sneaking into estuaries and rendering our precious freshwater supplies undrinkable. The threat of estuarine salinity on deltas and coastal regions is one that I greatly underestimated, even as someone working in this field for over a decade. That is, until Gijs Hendrickx came along.

Last week Gijs Hendrickx successfully defended his PhD on Nature-Based Solutions to Mitigate Salt Intrusion! I think I speak for everyone involved when I say that we are SO proud of him.

Continue reading Nature-Based Solutions for Salt Intrusion

Of Sediment and Seedlings

Mangrove forests protect tropical coastlines around the world from the effects of waves, in addition to providing valuable habitat for countless species. As such, their preservation and restoration is a key element of many plans for improving coastal resilience against flooding and erosion in the face of climate change. However, you can’t *just plant* a mangrove forest anywhere – mangroves are extremely picky, dancing on the edge of the intertidal zone where they get just wet enough but never too wet for too long. They also need safe, stable shorelines for their seedlings to take root and grow stronger, without too many waves and with just the right sort of muddy conditions to make a comfortable home.

Mangroves drop their seeds (called propagules) in the water, which then float around with the currents for days to weeks until they find a suitable home. But which pathways do these mangrove seedlings take as they float along the coast? Are those the same pathways that sand and mud take? These are questions that we need to answer in order to make better decisions about mangrove restoration. To get to the bottom of this, we recruited Femke Bisschop.

Last Friday, Femke successfully defended her thesis, “Modelling sediment and propagule pathways to improve mangrove rehabilitation: A case study of the pilot project in Demak, Indonesia“. She developed a numerical model of a site in Indonesia to simulate the motion of rivers and tides there, and then used the SedTRAILS model to visualize and interpret the pathways of sediment and mangrove propagules.

Continue reading Of Sediment and Seedlings