Mangrove forests protect tropical coastlines around the world from the effects of waves, in addition to providing valuable habitat for countless species. As such, their preservation and restoration is a key element of many plans for improving coastal resilience against flooding and erosion in the face of climate change. However, you can’t *just plant* a mangrove forest anywhere – mangroves are extremely picky, dancing on the edge of the intertidal zone where they get just wet enough but never too wet for too long. They also need safe, stable shorelines for their seedlings to take root and grow stronger, without too many waves and with just the right sort of muddy conditions to make a comfortable home.
Mangroves drop their seeds (called propagules) in the water, which then float around with the currents for days to weeks until they find a suitable home. But which pathways do these mangrove seedlings take as they float along the coast? Are those the same pathways that sand and mud take? These are questions that we need to answer in order to make better decisions about mangrove restoration. To get to the bottom of this, we recruited Femke Bisschop.
Tropical cyclones or hurricanes threaten the lives of millions and cause billions of dollars in damage every year. To estimate flood risks at a particular location, scientists and engineers typically start by looking at the historical record of all previous storms there. From these records, they can statistically predict how likely a storm of a given size is (e.g., the biggest storm likely to occur there in 100 years).
There are two problems with this approach: (1) What if there isn’t much historical data in the records? This is often the case for Small Island Developing States (SIDS) and in the Global South. If you don’t have enough data points (particularly for rarer, more extreme events), your statistical estimates will be much more uncertain. (2) What if the historical record isn’t representative of the conditions we are likely to see in the present and future? This is also a big problem in light of climate change, which is expected to bring sea level rise and changes in storminess to coasts around the world.
To address these challenges, our team led by Tije Bakker came up with a new approach to estimating tropical cyclone-induced hazards like wind, waves, and storm surge in areas with limited historical data. Our findings are now published open-access in Coastal Engineering here!
In the past few weeks, Vancouver and the BC Lower Mainland have suffered not just one but three record-breaking rainstorms, a succession of ”atmospheric rivers” that dumped several hundred millimetres of rain. Highways washed out and disappeared, and numerous communities were flooded. This resulted in an enormous quantity of sediment reaching the sea via the Fraser and other local rivers. But where exactly does the sediment that’s already in the sea around Vancouver go? How has that changed in the past few hundred years since Europeans colonized the area? To get to the bottom of this, we enlisted Carlijn Meijers.
Last week, Carlijn successfully defended her thesis, ”Sediment transport pathways in Burrard Inlet”. To answer these questions, she created a detailed hydrodynamic and sediment transport model of Burrard Inlet and Georgia Strait in D-Flow FM. She then used the SedTRAILS model that we have developed to visualize sediment transport pathways.
Modelled sediment transport pathways in Burrard Inlet. The red arrows highlight key patterns in the SedTRAILS particle trajectories. Burrard inlet is characterized by strong flows through the narrowest points of the fjord, and large eddies in the wider areas. Source: Meijers (2021).
From these models, Carlijn showed that sediment transport is largely controlled by flow through the First and Second Narrows (where the Lion’s Gate and Ironworker’s Memorial bridges cross). As the tide comes in, the water shoots through these narrow passages at speeds of up to 2 m/s and comes out the far side as a jet, spiraling off into eddies. The tide then goes out and the same happens in reverse, with water shooting out the opposite side.
Conceptual diagram showing the dominant sediment pathways in the Inner Harbour. Source: Meijers (2021).
Due to the sheltered nature of the inlet, waves have only a minor role in sediment transport. However, given the intensity of the tides and the great depths of Burrard Inlet (especially the Indian Arm fjord to the north), most sediment liberated by erosion tends to get carried away from shore and is essentially lost from the coastal sediment budget.
Another key point of her project was to investigate how land use changes and other human effects (e.g., damming rivers, port construction) have changed Burrard Inlet. Using the model, Carlijn showed that these changes to the inlet have shrunken its tidal prism, influencing the currents and sediment transport patterns.
Comparison of the present-day shoreline with the high and low tide lines from 1792, prior to colonization by European settlers. The Second Narrows are so narrow because they were formed by the delta of Seymour River and Lynn Creek. The area has since been dredged and walled off for the construction of the port and to create log booming grounds. Source: Meijers (2021).
These changes are especially evident when we compare satellite photos from the present day with the oldest available images from the 1940s.
Second Narrows in the 1940s and 2021. Please forgive my crappy georeferencing, I eyeballed it. Source: City of Vancouver and Google Earth.
Carlijn wrote an excellent report and capped it all off with one of the best master’s thesis defenses that I’ve seen in a long while. She also handled the cultural context of the project with great respect, interest, and sensitivity. If anyone reading this is looking to recruit a new engineer/researcher with heaps of potential, I cannot recommend Carlijn enough.
All in all, this was a fascinating project and one very close to my heart — I was born in the Vancouver area and was excited to see how the SedTRAILS model could be used in my original backyard. Let’s keep the Delft-Vancouvercollaborations going!
Ebb-tidal deltas are notoriously unpredictable. Battered about by waves and tides, their ever-shifting sands can be a royal pain in the arse for everyone from coastal residents to pirates. I have spent most of the past five years trying to identify the pathways that sand takes across these deltas as part of my PhD. However, the holy grail of ebb-tidal delta research is to take that one step further and make accurate morphodynamic predictions of their evolution on timescales of decades.
This past year, Denzel Harlequin took up the challenge, and I am pleased as punch to announce that last week he successfully defended his master’s thesis, ”Morphodynamic Modelling of the Ameland Ebb-Tidal Delta”. This is a really tricky problem to solve because of the complexity of the processes that need to be simulated.
What’s cool about Denzel’s work is that brings us closer to good morphodynamic predictions than we were before. Furthermore, where the predictions deviate from reality, he illuminates the areas where we still need to make improvements — specifically, our representation of wave-driven transports. Denzel also shows how the location of a sand nourishment can have major knock-on effects on the evolution of the ebb-tidal delta.
Different nourishment designs tested by Denzel. If you place the sand in a more dynamic area like a channel, it can have a much wider effect on the rest of the ebb-tidal delta.
Denzel is a very talented modeller and I am delighted that he has joined us as a new colleague in the Applied Morphodynamics department at Deltares. I look forward to many more great collaborations to come!
We forgave Bagnold everything for the way he wrote about dunes. “The grooves and the corrugated sand resemble the hollow of the roof of a dog’s mouth.” That was the real Bagnold, a man who would put his inquiring hand into the jaws of a dog. – Michael Ondaatje, The English Patient
Ralph Bagnold, widely considered one of the godfathers of sediment transport, was a soldier in the British army who spent much of the Second World War scouting around in the Libyan desert. In the process, he learned much about the dynamics of sand dunes, and formed the basis for many theories that are still in use today for explaining how sediment is blown around by wind or water.
This week I am proud of our very own up-and-coming Bagnold, Charlotte Uphues, who successfully defended her thesis, Coastal Aeolian Sediment Transport in an Active Bed Surface Layer, on Thursday. Charlotte did a fantastic job of designing and carrying out her own super cool field experiments, using tracer sediment to estimate aeolian (wind-blown) sediment transport on a beach here in Holland. As the dunes of the Netherlands are a key component to Dutch coastal defenses against flooding, it is essential that we understand better how they evolve by improving our abilities to predict aeolian transport.
I would elaborate a bit more about her findings, but Charlotte will be submitting her thesis for publication in a journal soon, so it will remain under wraps for now. Stay tuned, I don’t think we’ve heard the last from Charlotte!
Ebb-tidal deltas are gigantic piles of sand that form at the seaward mouth of tidal inlets. They are constantly on the move, shifting shape and size in response to the waves and tides. Where exactly is that sand going? This is a question I have been struggling with for the past 5 years during my PhD, and we have recently made great strides in part due to the efforts of Paula Lambregts.
Yesterday, Paula Lambregts successfully defended her master’s thesis, “Sediment bypassing at Ameland inlet“. I had the great honour of co-supervising Paula’s research throughout the last ten or so months, and I am enormously proud of her. Her project encompassed a range of approaches, including bathymetric analysis and numerical modelling, to solve the mystery of the sediment pathways.
First, Paula’s detective work led her to examine detailed measurements of the seabed bathymetry at Ameland Inlet in the Netherlands, taken over the past fifteen years. These measurements give snapshots of the underwater delta landscape. By comparing the bathymetry from different months or years, we can track the delta’s evolution. In the image below, we see four snapshots of the ebb-tidal delta before and after the construction of a sand nourishment (i.e., the large pile of sand that appears in panel B). This nourishment was a large-scale pilot test to determine if creating sand deposits like this is a viable strategy for strengthening the coast of nearby islands.
Bathymetric maps showing Ameland Ebb-Tidal Delta before (A) and after (B,C,D) the construction of a massive sand nourishment. Paula’s analysis tracked how this nourishment evolved over time, smoothed and smeared out to the east and south east by the combined effects of waves and tides.
After describing how the delta has evolved in the past, Paula developed hypotheses about the physics underlying this behaviour- how do waves and tides move the sand around to create the patterns we observe? To answer this question, she used a combination of computer models to estimate sand transport pathways. This allows us to “connect the dots” and explain how the sand moved from one place to another. The first component was a D-Flow FM model, which is used to simulate the hydrodynamics (waves and tides) and sediment transport (where and how much sand moves). The second component of her modelling approach was to apply SedTRAILS, a brand-new tool developed by my colleagues and I at Deltares for visualizing predicting sediment transport pathways. Using SedTRAILS, she was able to create some really cool maps that indicate where the sand goes.
Sediment transport pathways on Ameland ebb-tidal delta in 2020, as visualized using SedTRAILS. The small white circles indicate the source locations of sediment, and thin black lines show the sediment pathways originating from those sources. The yellow lines highlight major transport pathways, and the red lines indicate convergent zones where multiple pathways meet. The white dashed lines indicate divergence zones, where the transport pathways veer away from and (on average) do not cross.
Drawing on her prior expertise in geology, Paula combined those two lines of evidence (the measurements of the seabed and the modelled sediment pathways), to come up with a series of fantastic conceptual diagrams. These diagrams distill the mysterious piles of sand and complex spaghetti of the images above into a more easily understandable picture:
Paula’s conceptual model summarizing all of the different processes shaping Ameland ebb-tidal delta in 2020. Check out her thesis to see the complete evolution over the past 15 years!
The work that she did is extremely valuable for coastal management, since it gives more insight into where (and where not!) to construct sand nourishments. It also brings new insights to science about how these complex systems work. Last of all, it is enormously helpful for the research that we are continuing to do at TU Delft and Deltares. In September I will continue on with the work on sediment transport pathways at tidal inlets begun during my PhD, and build on the work that Paula has carried out in her thesis project. I am extremely proud of her and hope that we can continue to collaborate in the future!
Coral reefs and the islands that they protect from flooding are in big trouble. This is arecurringthemeon thisblog, and now it’s time for the latest update. We are currently building towards the development of an early flood warning system for low-lying tropical islands fronted by coral reefs. Our previous work on this topic has focused on finding ways to do this accurately for a wide variety of coral reef shapes and sizes, as well as different wave and sea level conditions. However, it’s not enough to be accurate- to deliver timely early warnings, you also need to be fast.
That’s where the latest research of Vesna Bertoncelj comes in.
Vesna’s research provides us with new approaches for making highly accurate predictions of coastal flooding, at limited computational expense. The numerical models that we use to estimate flooding often take a long time to simulate, since they resolve many complex physical processes at high resolution in space and time. However, by paring down these models to only the most essential components for the task at hand, we can do this much faster. My colleagues at Deltares recently developed the SFINCS model, which has been successfully used to predict flooding in a fraction of the time that our standard models take. But how do we put all these different pieces together?
A schematic overview of Vesna’s research methodology. [Source].
First, Vesna established a baseline for model performance by running a computationally intensive XBeach Non-Hydrostatic model (XB-NH+), and a much faster SFINCS model. These models provide an estimate for runup (R2%), which can be taken as a proxy for coastal flooding. In the second step, she used a lookup table (LUT) of pre-computed XBeach model output and to derive the input for the SFINCS model. The crucial task is doing this quickly and accurately, so she experimented with different interpolation techniques for deriving that input. She then compared her new approach with the standard models to find the fastest and most accurate combination.
Her research gives us a useful methodology that we can implement to speed up our early flood warning system, saving time and hopefully someday saving lives.
Vesna’s quality of work is excellent and she has a fantastic attitude towards research and collaboration. Her curiosity, professionalism, and diligence will undoubtedly serve her well in the years to come. I hope that we will have other opportunities to collaborate in the future. If anybody out there needs a bright young coastal researcher and/or modeller, hire her!
We frequently hear in the news about dying coral reefs, and also about the threats of sea level rise and climate change. But there is a key gap: what if we can hit two birds with one stone, and restore damaged ecosystems while providing vital protection against flooding? Our latest research demonstrates how coastal managers and ecologists can join forces to achieve both goals, which may help stretch limited funding further.
I am extremely proud to share Floortje Roelvink’s first scientific paper, “Coral reef restorations can be optimized to reduce coastal flooding hazards“, published in Frontiers of Marine Science. I had the great privilege of sitting on her MSc thesis committee two years ago, and she has been our colleague at Deltares ever since.
In an era of rising sea levels, ambitious plans for coastal protection works are emerging around the world. One such plan is the Delta21 project, proposed by group of Dutch coastal engineers and entrepreneurs. Their goal is to improve flood protection at the mouth of the Haringvliet estuary and develop a tidal power facility, all in one integrated project.
However, the law of unintended consequences often looms large in these sorts of massive infrastructure projects, particularly for environments as complex as estuaries. After a massive flood in 1953, the Dutch constructed the Delta Works, damming most of the estuaries in the southern half of the Netherlands. Prior to that, the Afsluitdijk was constructed across the Zuiderzee in the northern part of the country. These protection works have had dramatic consequences on the physical and ecological development of the Dutch coast, and manyofmycolleagues here have devoted their careers to analyzing the impact of these interventions.
But instead of just looking back and dissecting the successes and failures of 50 or 100 years past, what if we could also use our latest diagnostic tools for predicting the potential impact of bold future interventions? If the Delta21 plan goes ahead, how will the mouth and ebb-tidal delta of the Haringvliet estuary and surrounding coastline evolve? Will existing habitats (particularly in vital intertidal areas) be preserved, disappear, or even expand?
Today, Mayra Zaldivar Piña tackled these questions head on, and successfully defended her master’s thesis, “Stability of intertidal and subtidal areas after Delta21 plan“. I had the pleasure of co-supervising Mayra’s work throughout the last eight or so months, and am very proud of her. She embarked on a challenging modelling project and showed an exemplary critical scientific attitude. I was also so impressed with the persistence and tenacity she showed in doing nearly her entire project during the pandemic. Writing your thesis is a difficult and isolating experience at the best of times, and these are not the best of times. Nonetheless, she kept at it and delivered an impressive thesis in the end!
Congratulations Mayra, and best of luck in the next steps of your career!
Small island developing states around the world are especially vulnerable to the hazards posed by sea level rise and climate change. As engineers, we have a number of tools in our toolbox for reducing the risk posed by coastal flooding and for planning adaptation measures. We often rely on predictive models which combine information about expected wave and sea level conditions, the topography of the coast, and vulnerable buildings and population to estimate potential flooding and expected damage.
However, to use these types of models, we first need to answer a lot of questions: what exactly are the expected wave and sea level conditions? What if detailed topographic measurements are unavailable? What if the population of a given coastal area increases? How are the local buildings constructed, and what are the consequences of that for estimating damage from flooding?
If our information is imperfect (which it almost always is), all is not lost: we can still make educated guesses or test the sensitivity of our models to a range of values. However, these uncertainties can multiply out of control rather quickly, so we need to be able to quantify them. There is no sense in spending the time to develop a detailed hydrodynamic model if your bathymetry data is crap. Can we get a better handle on which variables are the most important to quantify properly? Can we prioritize which data is the most important to collect? This would help us make better predictions, and to make better use of scarce resources (data collection is expensive, especially on remote islands!).
Based on a study of the islands of São Tomé and Príncipe, off the coast of Africa, Matteo found that topographic measurements and the relationship between flood depth and damage to buildings were the biggest uncertainties for predicting present-day flood damage. This means that measuring topography of vulnerable coastal areas in high resolution, and performing better post-disaster damage surveys will provide the best “bang for your buck” right now. However, for longer time horizons (i.e. the year 2100), uncertainty in sea level rise estimates become most important.
Matteo’s work will help coastal managers on vulnerable islands to better prioritize limited financial resources, and will improve the trustworthiness of our predictive models. Great job, Matteo!