Keeping it Connected Around the World

It has been a crazy year, but work-wise I am on the final stretch, at least. Tonight at the ungodly hour of 12am CET, I will present my poster at the American Geophysical Union conference. It is at a much more reasonable 3pm PST in California where the conference organizers are located. If you have registered for the conference, you can see the poster via this link. Otherwise, I will try to put you in the loop here.

Estuaries are complex environments shaped by the interaction of waves, tides, rivers, and humans. Understanding how sand and mud move through estuaries is essential for their effective management. In an approach known as connectivity, the pathways taken by sand and mud through estuaries can be represented as a connected network of nodes and links, similarly to a subway map. Connectivity provides numerous mathematical techniques and metrics that are well-suited to describing and comparing these pathways in estuaries.

Network diagrams depict the sediment transport pathways of each estuary as a series of nodes and connecting links. The Mouth of the Columbia River (1) and San Francisco Bay (2) are on the west coast of the United States, while Ameland Inlet (3) and the Western Scheldt (4) are in the Netherlands. Red arrows indicate the 90th percentile of all connections in terms of sediment fluxes, superimposed on greyscale bathymetry of each estuary.

We use connectivity to map out and analyze sand and mud pathways in four estuaries around the world: the Wadden Sea (the Netherlands), Western Scheldt (NL), San Francisco Bay (US), and Columbia River (US). Our analysis is based on the outcome of numerical simulations, and we explore the benefits of different simulation techniques. We conclude that connectivity is a useful approach for visualizing and comparing the pathways that sand and mud takes through different estuaries. We can use this method to plan and predict the impact of human interventions in these environments, such as dredging.

However, a comparison of connectivity metrics suggests a dependency not just on sediment transport processes, but also on the choices made in schematizing networks from underlying models.  Essentially, we’re not comparing apples to apples yet, so if we are going to make comparisons between different estuaries, we need to make sure that we set up our models in an equivalent way. Our ongoing research will focus on optimizing these numerical models to make more meaningful quantitative comparisons of different estuaries.

Do You Know the Way to San Jose? This Sediment Does…

What pathways does sediment take as it travels through an estuary?  Yesterday, Laurie van Gijzen defended her thesis, entitled “Sediment Pathways and Connectivity in San Francisco South Bay“. Laurie is one of the master’s students that I supervise, and she has done a great job on this project.

San Francisco Bay is a massive estuary, with over six million people living nearby.  In addition to San Francisco, Silicon Valley sits on its shores.  Some of the biggest tech companies in the world like Google and Facebook have their head offices right next to the Bay.  For over 150 years, the ecological health of the bay has deteriorated, in part due to land reclamations and contaminated sediment from gold mining. The dynamics of San Francisco thus have a huge economic, social, and environmental impact.

Laurie’s work focused on calibrating and improving a sediment transport model of the bay, in order to track the pathways of fine sediment (i.e., mud).  She worked with a notoriously fickle model (DELWAQ) and succeeded in greatly improving its calibration.

laurieSummary
Laurie’s thesis summarized into a single diagram (Figure 6.1 from her report).  She shows the dominant sediment pathways as dark arrows, and the net accumulation (import, in orange) or depletion (export, in blue).  Also indicated are the dominant physical processes responsible for sediment transport in the different parts of the bay.  The baroclinic processes mentioned here are currents resulting from density differences in seawater due to changes in salinity and temperature.

Another cool thing about her work is that Laurie was the first person to apply the coastal sediment connectivity framework that I have been developing!  She was able to use this to identify key transport pathways and critical locations in the bay. It was extremely helpful for my research, as it gives us a proof of concept that our framework is applicable to multiple sites and can tell us something useful.

Her work was also accepted for a presentation at the NCK Days conference, which was meant to be held this week in Den Helder, but was cancelled due to ongoing societal chaos. Great job, Laurie!

Where Water Comes Together with Other Water

I recently found a poem by Raymond Carver that really struck a chord with me, and I thought I’d share it for anyone else who is estuarily enthusiastic:

Where Water Comes Together with Other Water

I love creeks and the music they make.
And rills, in glades and meadows, before
they have a chance to become creeks.
I may even love them best of all
for their secrecy. I almost forgot
to say something about the source!
Can anything be more wonderful than a spring?
But the big streams have my heart too.
And the places streams flow into rivers.
The open mouths of rivers where they join the sea.
The places where water comes together
with other water. Those places stand out
in my mind like holy places.
But these coastal rivers!
I love them the way some men love horses
or glamorous women. I have a thing
for this cold swift water.
Just looking at it makes my blood run
and my skin tingle. I could sit
and watch these rivers for hours.
Not one of them like any other.
I’m 45 years old today.
Would anyone believe it if I said
I was once 35?
My heart empty and serene at 35!
Five more years had to pass
before it began to flow again.
I’ll take all the time I please this afternoon
before leaving my place alongside this river.
It pleases me, loving rivers.
Loving them all the way back
to their source.
Loving everything that increases me

– Raymond Carver

The image at the top of this post is of the mouth of the Columbia River, apparently at the beginning of flood tide. The plume of sediment and fresh water from the muddy river has extended out into the Pacific and mixed with salty seawater.  Then, as the tide turns, it floods and brings the new mixture back into the estuary.  This results in the second, inner plume pushing its way past the jetties.  The contrasting physical properties of these two meeting bodies of water results in the beautiful patterns we see here.  “The places where water comes together with other water. Those places stand out in my mind like holy places.”

Sources:

Carver, R. Where Water Comes Together with Other Water. Astley, N. (Ed.). (2011). Being Human: Real Poems for Unreal Times. Tarset: Bloodaxe Books.

Sentinel-2 L1C image from February 10, 2020 (Source: https://tinyurl.com/uze5feu). Image has been slightly enhanced to improve contrast.