How do sand and mud move around on our coasts? This is a question that we need to answer in order to sustainably manage coastlines in the face of sea level rise and climate change. To do so, we use a combination of field measurements and computer simulations at Ameland Inlet in the Netherlands. In the course of my PhD we developed several new methods, including morphodynamic mapping techniques, a sediment composition index (SCI) derived from optical and acoustic measurements, techniques for sediment tracing, the sediment connectivity framework, and a Lagrangian sediment transport model (SedTRAILS). Together, these approaches reveal new knowledge about our coasts which can be used for managing these complex natural systems.
That’s a bit of a mouthful, so let’s break it down and try to explain what I have been doing with sand for the last half-decade…
Ebb-tidal deltas are notoriously unpredictable. Battered about by waves and tides, their ever-shifting sands can be a royal pain in the arse for everyone from coastal residents to pirates. I have spent most of the past five years trying to identify the pathways that sand takes across these deltas as part of my PhD. However, the holy grail of ebb-tidal delta research is to take that one step further and make accurate morphodynamic predictions of their evolution on timescales of decades.
This past year, Denzel Harlequin took up the challenge, and I am pleased as punch to announce that last week he successfully defended his master’s thesis, ”Morphodynamic Modelling of the Ameland Ebb-Tidal Delta”. This is a really tricky problem to solve because of the complexity of the processes that need to be simulated.
What’s cool about Denzel’s work is that brings us closer to good morphodynamic predictions than we were before. Furthermore, where the predictions deviate from reality, he illuminates the areas where we still need to make improvements — specifically, our representation of wave-driven transports. Denzel also shows how the location of a sand nourishment can have major knock-on effects on the evolution of the ebb-tidal delta.
Different nourishment designs tested by Denzel. If you place the sand in a more dynamic area like a channel, it can have a much wider effect on the rest of the ebb-tidal delta.
Denzel is a very talented modeller and I am delighted that he has joined us as a new colleague in the Applied Morphodynamics department at Deltares. I look forward to many more great collaborations to come!
This morning as I was finishing my first coffee, one of my Deltares colleagues shared a video of a house on the beach in El Salvador. It was a surreal, post-apocalyptic, Planet of the Apes scene, made all the more mysterious by the accompanying news text (translated from Dutch): “Abandoned villa washes up entirely on the beach in El Salvador. The ruins of a villa have recently washed up on the beach of La Puntilla in El Salvador. It is a great mystery how the entire house ended up on the beach. Hurricane Elsa may have blown the building away.“
Having spent a fair bit of time professionally contemplating the destructive power of storm-generated waves on tropical coastlines, I was immediately skeptical about this hypothesis. How could a massive concrete structure like that survive such a pummeling and then just “wash up” on a beach?
Being a bunch of sediment transport nerds, my colleagues made all kinds of jokes about building a house-transport module into XBeach or SedTRAILS, or estimating the critical shear threshold and porosity of this giant “particle”. However my curiosity was irrevocably piqued- how did the damn thing get there? It must have been there the whole time, with the coast eroding around that, but how or why?
The Dutch news site was not particularly helpful, so I snooped around on the internet until I found a promising lead in the El Salvadorian news. Apparently the house is located near the village of La Puntilla, on the Pacific coast of El Salvador. Apparently it was a former hotel built (unwisely) right next to the beach. Suffering significant damage during Hurricane Mitch in 1998, it later became a church. Numerous people died in the former hotel and more recently among the ruins, so the building is even spookier than it first seemed. Indeed, after looking in Google Earth, it became apparent that the hotel has been there the entire time:
Before-and-after satellite photos of the abandoned hotel in La Puntilla, showing about 150 m of beach erosion between 2003 and 2021. The dashed line indicates the approximate position of the 2003 shoreline, based on some quick-and-dirty georeferencing and not accounting for potential variations in shoreline position due to the stage of the tidal cycle at the time each photo was taken. The tidal range on 50 km up the coast is about 2 m, so if the beach is very flat, the 2003 shoreline may actually be much closer at high tide.
So the hotel didn’t just “wash up on the beach” one day. But why exactly did it erode so much? Was there a particularly devastating storm? Is climate change or some nefarious human meddling in the coastline to blame? By zooming out a little bit, we can put this coastal erosion into a larger context.
Google Earth is nearly always my first go-to tool for investigating a new site as a coastal engineer — you can learn so much by carefully observing how a given beach or estuary has changed through time, and by looking for evidence of the physical processes shaping the landscape. For instance, white foam usually indicates breaking waves, and by watching how sand piles up in certain places, we can estimate in which direction the sand is mostly moving. What can we learn about this site?
Tidal inlet at La Puntilla, El Salvador. The inlet channel connects the Pacific Ocean to a tidal lagoon, and is fronted by an underwater ebb-tidal delta. Large swell waves travel thousands of kilometers from the stormy south Pacific and break on the ebb-tidal delta (see the white foam), which greatly reduces their size. In this way, the ebb-tidal delta acts like a massive, sandy breakwater. Waves generate currents that push the sand from right to left along the coast, but the sand needs to cross the inlet. It makes this journey in regular spurts that lead to periodic accumulation and erosion of sand along the nearby coasts. This is the fate that befell our poor abandoned hotel.
It seems that the hotel was built on a type of coastal feature that is notorious for massive erosion world-wide: the beach adjacent to a tidal inlet. Tidal inlets connect lagoons with the ocean, the water rushing in and out of them several times a day. The water moves very fast and is stirred up by waves, so it can carry lots of sand and mud to and from the nearby coast. This means that this tidal inlets and the coastlines next to them have the potential to change shape dramatically over time. The inlet channel and smaller channels connected to it have a tendency to migrate back and forth across the underwater ebb-tidal delta like an out-of-control fire hose. If one of these channels is pushed up against the coast, it can cause massive erosion. This seems to be what happened to the abandoned hotel.
If you examine a timelapse in Google Earth (here), the incredibly dynamic nature of this system is apparent:
By a remarkable coincidence, this is the same process that I am investigating in my PhD: how does sediment move around at tidal inlets like this? It is not only the El Salvadorians who need to worry about this process — the topic is also a vital matter of investigation for Dutch coastal management authorities trying to protect their coast. Lesson learned: don’t mess with ebb-tidal deltas!
At TU Delft, a requirement for our PhD defense is to make ten propositions based on what we have learned during the previous years. Claims posed by my friends and colleagues deal with the nitty gritty details (“All diffusive processes can be derived from an advective one, and failing to do so yields incorrect modelling“[1]) but also the bigger picture of how we do what we do (“The way morphological models are presented and interpreted has a lot in common with predictions of snow depth in five years on December 26th at 4pm. The knowledge in these models deserves a better presentation“[2]).
The propositions must be both defendable and opposable, so as to stimulate an interesting debate during the defense. Some of the propositions should reflect the findings of our research, but it is also traditional to include statements that have nothing to do with it. One colleague[3] even suggested (tongue in cheek) that the increase in the height of Dutch men over time could be explained by sea level rise. I couldn’t resist analyzing the data myself, and the results were surprisingly good:
Spurious correlation of the week! As John von Neumann said, “With four parameters I can fit an elephant, and with five I can make him wiggle his trunk.”
These propositions are a chance to inject a bit of last-minute philosophizing into our Doctorates of Philosophy, and range from the wise (“No wind is favourable if a person does not know to what port (s)he is steering – Seneca“[4]) to the downright cheeky (“This proposition is not opposable“[1]).
What I Learned by Counting Sand for 5 Years
As the clock is ticking on my own PhD (259 days, 13 hours, 39 minutes, and 51 seconds, but who’s counting? *eye twitches*), I started preparing some propositions of my own (obviously in a fit of procrastination on my dissertation). After nearly five years of scrutinizing sand and contemplating connectivity, my research has led me to an inescapable conclusion:
Ebb-tidal deltas are badass morphological features (BAMFs), (c.f. Phillips [2015]).
What, pray tell, is an ebb-tidal delta, and why is it so badass? Ebb-tidal deltas are large underwater piles of sand at the mouth of estuaries and tidal inlets, deposited by outflowing tides and reshaped by waves. I spend my days studying how waves and tides move sand around on the Ameland ebb-tidal delta in the northern part of the Netherlands (see below). We need to know this in order to plan ecologically-sustainable flood protection measures for the Dutch coast. A morphological feature is just a fancy name for some part of a landscape, like a hill or a valley or a beach.
An ebb-tidal delta is the giant pile of sand located at the mouth of a tidal inlet like this one. This may not sound glamorous, but understanding the way it moves around is extremely important for ensuring safe navigation and for predicting erosion and flooding of adjacent coasts.
What makes a badass “badass”?
Phillips[5] defines the archetypal badass as “individualistic, non-conformist, and able to produce disproportionate results”, and applies this concept to geomorphology (the study of how landscapes evolve, at the crossroads of geology and physical geography). Ebb-tidal deltas meet these three criteria, which makes them badass morphological features (BAMFs):
Ebb-tidal deltas are each unique (in shape, location, composition, and in terms of the environmental forces shaping them (like waves and tides)), and hence individualistic.
Ebb-tidal deltas are chaotic systems which defy accurate prediction using physics-based numerical models[6], and hence are non-conformist or “naughty”[7]. This numerical naughtiness is a serious problem for coastal engineers and scientists, since a failure to accurately predict ebb-tidal delta evolution can threaten public safety and lead to costly property or infrastructure damage. They do not “play by the rules” of our existing physics-based deterministic models.
Ebb-tidal deltas are highly nonlinear systems which can greatly amplify small instabilities[8], and hence produce disproportionate results.
In addition to the strict definitions of Phillips[5], ebb-tidal deltas are also “belligerent or intimidating, ruthless, and tough”, other traits reflective of badassery [Oxford Engish Dictionary]. The Columbia River ebb-tidal delta alone is responsible for dozens shipwrecks in the past century, and Ameland ebb-tidal delta has also featured numerous wrecks throughout its history.
Quoting Thomas Pynchon[9], Phillips also notes that badasses are “able to work mischief on a large scale”. Ameland ebb-tidal delta covers an area of approximately 100 square kilometers, roughly the size of The Hague. Many ebb-tidal deltas around the world are even larger!
Seriously?
Now admittedly, ebb-tidal deltas are just big piles of sand. A big pile of sand is probably not the first thing that comes to mind when you hear the word “badass”, unless you are Ralph Bagnold or a Sarlacc. This could probably also be considered gratuitous personification or anthropomorphization.
I’m sure that many of my friends and family have been scratching their heads as to why I would sacrifice the latter half of my 20s to understand them better. A critical reader might ask, “is it possible that you have only convinced yourself that ebb-tidal deltas are cool out of self-preservation?” And the answer is yes. Yes, I have. Nonetheless, I remain steadfast in my assertion that ebb-tidal deltas exhibit major symptoms of geomorphological badassery.
Although the concept of geomorphological badassery may seem silly at first, it illuminates several important truths of our (mis)understanding of these complex bathymetric features. Ebb-tidal deltas are important to study for reasons of coastal flood protection, navigational safety, and ecological value, but we are bad at predicting how they will evolve. This is because each ebb-tidal delta is unique, making it challenging to generalize their behavior. Furthermore, their chaotic, non-conformist behavior renders many of our usual deterministic prediction techniques ineffective. Lastly, the amplifying effect of highly nonlinear physical processes means that small physical changes (e.g., the development of a tiny shoal) could have disproportionately large consequences (e.g., relocation of a channel several kilometers wide). As such, badassery provides a useful conceptual framework for describing the challenges presented by ebb-tidal deltas to coastal engineers and scientists.
In an era of rising sea levels, ambitious plans for coastal protection works are emerging around the world. One such plan is the Delta21 project, proposed by group of Dutch coastal engineers and entrepreneurs. Their goal is to improve flood protection at the mouth of the Haringvliet estuary and develop a tidal power facility, all in one integrated project.
However, the law of unintended consequences often looms large in these sorts of massive infrastructure projects, particularly for environments as complex as estuaries. After a massive flood in 1953, the Dutch constructed the Delta Works, damming most of the estuaries in the southern half of the Netherlands. Prior to that, the Afsluitdijk was constructed across the Zuiderzee in the northern part of the country. These protection works have had dramatic consequences on the physical and ecological development of the Dutch coast, and manyofmycolleagues here have devoted their careers to analyzing the impact of these interventions.
But instead of just looking back and dissecting the successes and failures of 50 or 100 years past, what if we could also use our latest diagnostic tools for predicting the potential impact of bold future interventions? If the Delta21 plan goes ahead, how will the mouth and ebb-tidal delta of the Haringvliet estuary and surrounding coastline evolve? Will existing habitats (particularly in vital intertidal areas) be preserved, disappear, or even expand?
Today, Mayra Zaldivar Piña tackled these questions head on, and successfully defended her master’s thesis, “Stability of intertidal and subtidal areas after Delta21 plan“. I had the pleasure of co-supervising Mayra’s work throughout the last eight or so months, and am very proud of her. She embarked on a challenging modelling project and showed an exemplary critical scientific attitude. I was also so impressed with the persistence and tenacity she showed in doing nearly her entire project during the pandemic. Writing your thesis is a difficult and isolating experience at the best of times, and these are not the best of times. Nonetheless, she kept at it and delivered an impressive thesis in the end!
Congratulations Mayra, and best of luck in the next steps of your career!